So i drilled the pin holes from a very 'wallered' 5/8" to 3/4 using a stepper bit so the 5/8-to-3/4 spacers would fit. Drilled the washers to 3/4" as well. You can see the drill and a flange-style vise grip with a washer in it on the ground there.
Split the spacer/sleeve in two using the press as a vise, which i am prone to doing.
Then put the sleeves in both sides of the arm with a 5/8" rod through the middle to fix the alignment.
I left the sleeves standing a little proud of the washers so i could weld the two together without getting weld into the bore and having to clean that up. This was a weird idea in the first place, but my thinking was basically to weld straight through the thin washer to the thick metal below, going in a circle around the sleeve and just bumping the weld puddle over to the sleeve enough to melt into the sleeve without going through it and trying to weld to the pin. Sounds finicky? Cuz it was a dumb idea! But it worked, well enough for purpose i suppose. Of course the washer distorted slightly from heat so i pressed them down parallel and flat in the press or with a big c-clamp (cant remember) when i welded the washer edges down to the stabilizer arm. Then cut off the protruding sleeve and flap disced everything flat. Here's a pic of a 'finished' one (out of 4). You can kinda see what i was doing with the weld penetration into the sleeve but not through it, but its inconsistent from one side to the other. I dont remember if the others were better, this is the only pic like this.
\
So WHY did i even do this?!
Well.. when looking at all the bent up parts originally and thinking about it, there was a lot of slack/clearance in all the parts. The way i saw it, if you think about bending metal you first go through the 'elastic' deformation range where you're just flexing it and it's going to bounce back, and if you go past that you get into the 'plastic' deformation range where it STAYS bent.
When all the parts had slack, the various parts were allowed to flex independently to some extent and could only rely on their own strength because for the most part the parts were not 'bracing' each other, so you only had to hit the 'plastic deformation' point of the weakest link, and then the whole assembly of parts would bend one after the other like dominoes.
On the other hand, if i removed all the clearance between the arms/brackets/pins and braced the arms and brackets, they would strengthen each other and while there would still be a weakest link, it would be at a much higher threshold. Plus, if the arms had 0 clearance inside their subframe brackets, they would not be allowed to 'rack' and come out of plane and bend the pins. The pins 'should' only fail in shear. That was the thought. And here's the pins that came out, for reference.. Every single one bent.
So here's an arm sitting inside a bracket. Am i a good welder? Maybe not. But i might be as good as the guy that built this thing, and I THINK im improving it, so.. onwards!
Not much lash left to take up! And a wider 'bearing' surface both on the pin surface and the bracket faces, then there had been.
Split the spacer/sleeve in two using the press as a vise, which i am prone to doing.
Then put the sleeves in both sides of the arm with a 5/8" rod through the middle to fix the alignment.
I left the sleeves standing a little proud of the washers so i could weld the two together without getting weld into the bore and having to clean that up. This was a weird idea in the first place, but my thinking was basically to weld straight through the thin washer to the thick metal below, going in a circle around the sleeve and just bumping the weld puddle over to the sleeve enough to melt into the sleeve without going through it and trying to weld to the pin. Sounds finicky? Cuz it was a dumb idea! But it worked, well enough for purpose i suppose. Of course the washer distorted slightly from heat so i pressed them down parallel and flat in the press or with a big c-clamp (cant remember) when i welded the washer edges down to the stabilizer arm. Then cut off the protruding sleeve and flap disced everything flat. Here's a pic of a 'finished' one (out of 4). You can kinda see what i was doing with the weld penetration into the sleeve but not through it, but its inconsistent from one side to the other. I dont remember if the others were better, this is the only pic like this.
So WHY did i even do this?!
Well.. when looking at all the bent up parts originally and thinking about it, there was a lot of slack/clearance in all the parts. The way i saw it, if you think about bending metal you first go through the 'elastic' deformation range where you're just flexing it and it's going to bounce back, and if you go past that you get into the 'plastic' deformation range where it STAYS bent.
When all the parts had slack, the various parts were allowed to flex independently to some extent and could only rely on their own strength because for the most part the parts were not 'bracing' each other, so you only had to hit the 'plastic deformation' point of the weakest link, and then the whole assembly of parts would bend one after the other like dominoes.
On the other hand, if i removed all the clearance between the arms/brackets/pins and braced the arms and brackets, they would strengthen each other and while there would still be a weakest link, it would be at a much higher threshold. Plus, if the arms had 0 clearance inside their subframe brackets, they would not be allowed to 'rack' and come out of plane and bend the pins. The pins 'should' only fail in shear. That was the thought. And here's the pins that came out, for reference.. Every single one bent.
So here's an arm sitting inside a bracket. Am i a good welder? Maybe not. But i might be as good as the guy that built this thing, and I THINK im improving it, so.. onwards!
Not much lash left to take up! And a wider 'bearing' surface both on the pin surface and the bracket faces, then there had been.